Estimating Limit Values with Tables
pdf with answer key " />
When working with tables, the best we can do is estimate the limit value.
Examples
Example 1: Using Tables to Estimate Limits
Use the tables shown below to estimate the value of $$\displaystyle \lim_ f(x)$$.
$$ \begin & \\ \hline 4.5 & 8.32571\\\hline 4.75 & 8.95692\\\hline 4.9 & 8.99084\\\hline 4.99 & 8.99987\\\hline 4.999 & 8.99992\\\hline 4.9999 & 8.99999\\\hline \end $$
$$ \begin & \\ \hline 5.5 & 9.64529\\\hline 5.25 & 9.26566\\\hline 5.1 & 9.04215\\\hline 5.01 & 9.00113\\\hline 5.001 & 9.00011\\\hline 5.0001 & 9.00001\\\hline \end $$
Examine what happens as $$x$$ approaches from the left.
As the $$x$$-values approach 5.
$$ \begin & \\ \hline 4.5 & 8.32571\\\hline 4.75 & 8.95692\\\hline 4.9 & 8.99084\\\hline 4.99 & 8.99987\\\hline 4.999 & 8.99992\\\hline 4.9999 & 8.99999\\\hline \end $$
. $$f(x)$$ seems to approach 9.
Examine what happens as $$x$$ approaches from the right.
As the $$x$$-values approach 5.
$$ \begin & \\ \hline 5.5 & 9.64529\\\hline 5.25 & 9.26566\\\hline 5.1 & 9.04215\\\hline 5.01 & 9.00113\\\hline 5.001 & 9.00011\\\hline 5.0001 & 9.00001\\\hline \end $$
. $$f(x)$$ seems to approach 9.
If the function seems to approach the same value from both directions, then that is the estimate of the limit value.
Answer: $$\displaystyle \lim_ f(x) \approx 9$$.
Example 2: Using Tables to Estimate Limits
Using the tables below, estimate $$\displaystyle \lim_ f(x)$$.
$$ \begin & \\ \hline -8.5 & 13.1365\\\hline -8.1 & -2.4336\\\hline -8.01 & -2.91313\\\hline -8.001 & -2.99131\\\hline -8.0001 & -2.99913\\\hline -8.00001 & -2.99991\\\hline \end $$
$$ \begin & \\ \hline -7.5 & -6\\\hline -7.9 & -5.5\\\hline -7.99 & -5.15\\\hline -7.999 & -5.015\\\hline -7.9999 & -5.0015\\\hline -7.99999 & -5.00015\\\hline \end $$
Examine what happens as $$x$$ approaches from the left.
As the $$x$$-values approach -8.
$$ \begin & \\ \hline -8.5 & 13.1365\\\hline -8.1 & -2.4336\\\hline -8.01 & -2.91313\\\hline -8.001 & -2.99131\\\hline -8.0001 & -2.99913\\\hline -8.00001 & -2.99991\\\hline \end $$
. $$f(x)$$ seems to approach -3.
Examine what happens as $$x$$ approaches from the right.
As the $$x$$-values approach -8.
$$ \begin & \\ \hline -7.5 & -4\\\hline -7.9 & -3.5\\\hline -7.99 & -3.15\\\hline -7.999 & -3.015\\\hline -7.9999 & -3.0015\\\hline -7.99999 & -3.00015\\\hline \end $$
. $$f(x)$$ seems to approach -3.
If the function seems to approach different values, then the limit does not exist.
Answer: $$\displaystyle \lim_ f(x)$$ does not exist.